Experimentally determined tilt and bending moduli of single-component lipid bilayers.

نویسنده

  • John F Nagle
چکیده

Values of the bending modulus KC and the tilt modulus Kθ are reported for single component lipid bilayers. The lipids studied have the common names DOPC, DMPC, diC22:1PC, SOPC, POPC, diPhyPC, DLPC, DPPC, DHPC and DEPC, listed in the order of number of samples examined. The experimental method, thus far the only one that measures the tilt modulus of lipid bilayers, first obtains diffuse X-ray scattering data from oriented stacks of bilayers. The values of the moduli emerge from fitting the data to the accepted tilt-dependent continuum model for the free energy of a single bilayer, further enhanced by interactions between bilayers in the stack. The results indicate the broad trend that the tilt modulus for these PC lipids is smaller the closer the temperature is to the main transition temperature. Another trend is that inclusion of tilt raises the value of the bending modulus more for lipids with smaller values of the tilt modulus. Values of both moduli are compared to recent literature values obtained from simulations and values of the bending modulus are compared to the literature values obtained by other experimental methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Biomembrane Bending Moduli in Fully Atomistic Simulations

The bilayer bending modulus (Kc) is one of the most important physical constants characterizing lipid membranes, but precisely measuring it is a challenge, both experimentally and computationally. Experimental measurements on chemically identical bilayers often differ depending upon the techniques employed, and robust simulation results have previously been limited to coarse-grained models (at ...

متن کامل

Sugar does not affect the bending and tilt moduli of simple lipid bilayers.

The diffuse X-ray scattering method has been applied to samples composed of SOPC, DOPC, DMPC, and POPC with added sugar, either sucrose, glucose, fructose, maltose, or trehalose. Several sugar concentrations in the range 200-500 mM were investigated for each of the lipid/sugar samples. We observed no systematic change in the bending modulus KC or in the tilt modulus Kθ with increasing sugar con...

متن کامل

Tilt-Dependent Analysis of Diffuse X-ray Scattering from Oriented Stacks of Fluid Phase Lipid Bilayers

Recent simulations have indicated that the traditional Helfrich-Canham model for topographical fluctuations in fluid phase biomembranes should be enriched to include molecular tilt. Experimental evidence supporting the aforementioned enrichment is reported. The current work is a tilt-dependent analysis of the X-ray scattering from oriented stacks of fluid phase lipid bilayers. By analyzing seve...

متن کامل

Experimental support for tilt-dependent theory of biomembrane mechanics.

Recent simulations have indicated that the traditional model for topographical fluctuations in biomembranes should be enriched to include molecular tilt. Here we report the first experimental data supporting this enrichment. Utilizing a previously posited tilt-dependent model, a height-height correlation function was derived. The x-ray scattering from a liquid crystalline stack of oriented flui...

متن کامل

Elastic curvature constants of lipid monolayers and bilayers.

Bending elasticity is an important property of lipid vesicles, non-lamellar lipid phases and biological membranes. Experimental values of the mean curvature moduli, k(c), of lipid bilayers and of the monolayer leaflets of inverted hexagonal (H(II)) phases of lipids are tabulated here for easy reference. Experimental estimates of the Gaussian curvature modulus, k (c), are also included. Consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry and physics of lipids

دوره 205  شماره 

صفحات  -

تاریخ انتشار 2017